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Abstract— This paper developed an industrial manipulator 

integrated with a structured-light-based 3D scanning system 

using Gray code and phase-shifting patterns, implementing the 

bin-picking problem. The procedure of the vision-based robotic 

system developed in this paper is described as follows: First, the 

object is reconstructed in point cloud format by projecting a 

series of Gray code patterns followed by four-phase shift 

patterns. Point clouds of the object from different views are 

filtered and concatenated to obtain the full cloud. The full 

clouds, altogether with partial clouds, then are fed to PointNet 

neural network as a training dataset, whose estimated grasping 

pose can be used to pick up the objects from a bin. By using the 

estimated grasping pose, the robotic arm can reach the desired 

position and pick the object. Experimental results indicate that 

the developed vision-based system can reconstruct objects and 

grasp different-sized objects in the bin. 

I. INTRODUCTION 

Industrial robotic arms often are utilized to automate the 
process of picking and placing objects. In the picking tasks, 
the conventional robotic arm needs to pre-determine the 
position of the object to be picked up. It results that they 
cannot handle problems wherein the positions and 
orientations of the object are unknown, e.g., objects in a bin. 
In these situations, the computer vision system can be 
integrated into the robotic system to determine the pose of 
objects. Industrial applications of 3D computer vision demand 
robustness and high accuracy in data acquisition for many 
purposes. Many approaches have been considered where 
either laser or structured light scanner is employed. While 
both have their own advantages, structured light scanners 
have proven more effective in close-range applications where 
objects are small to medium [1], and obtaining sub-millimeter 
accuracy is a priority [2]. Therefore, implementations of 
stereo vision in bin picking, positioning, and extracting 
individual elements in a disorganized environment have 

 
*This work was supported by the National Research Foundation (NRF) 

of Korea under the auspices of the Ministry of Science and ICT, Korea 

(grant no. NRF-2020R1A2B5B03096000)  
Q. C. Nguyen is with the Department of Mechatronics, Faculty of 

Mechanical Engineering, Ho Chi Minh City University of Technology 

(HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam (corresponding author) 
(e-mail: nqchi@hcmut.edu.vn). 

P. T. Ly, N. D. H. Nguyen, and P.-T. Pham are with the Department of 

Mechatronics, Faculty of Mechanical Engineering, Ho Chi Minh City 
University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, 

Vietnam (e-mails: thanh.ly0610@hcmut.edu.vn; pptung@hcmut.edu.vn 

hung.nguyen3112@hcmut.edu.vn). 
K.-S. Hong is with the School of Mechanical Engineering, Pusan 

National University, Busan 46241, South Korea (e-mail: 

kshong@pusan.ac.kr). 
 

gathered increasing interest due to ongoing challenges posed 
by manufacturing and market demands [3-4]. 

 In the spectrum of stereo vision, there are two primary 
approaches, i.e., passive and active. For the former approach, 
ordinary images are obtained, and input images are not 
encoded. As a result, output data are prone to errors and 
heavily dependent on the prominent distinction between pairs 
of input images [5]. Consequently, passive stereo systems are 
obsolete, making way for active systems. For active 
approaches, structured-light-based stereo system concerns 
coded light patterns, which are projected onto objects, so 
input images for correspondence matching are substantially 
enhanced and optimized. This raises the opportunities for 
robust integration into robot manipulators where 3D 
reconstruction is required. This implementation means 
significant improvements in automation, cutting down on 
operation costs and human interference for tasks that demand 
a combination of data acquisition and process actuation from 
the robots. 

Structured light 3D reconstruction has been investigated 
in the literature. The ideal of vision systems based on a 
combination of Gray code and phase shifting profilometry 
(PSP) was proposed by Gühring et al. [6] and Sansoni et al. 
[7]. More recently, combining RGB-D depth camera, using 
infrared, with laser 3D scanner was applied for the 
maintenance of aircraft fuselage in which the system picked 
up any surface deformations [2]. Structured light for forensic 
medicine was also studied in [8], where blue fringes were 
projected for the registration of body parts that could be used 
for autopsy or criminal investigation. Phase shifting 
profilometry was also implemented individually for the sake 
of fast, real-time performance in 3D reconstruction [9], using 
4-step PSP patterns. Though robust and easy to deploy, Gray 
code and PSP suffer when specular surfaces are present 
because projected patterns are not distinguishable, this 
problem was addressed and studied in [10], where maximum 
min-SW Gray code was implemented to overcome reflective 
light. Cuc et al. [11] also proposed another approach to 
overcome reflective surfaces using histogram thresholding for 
optimal exposure time. Furthermore, novel structured light 
patterns have also been studied. In particular, Zhang [12] 
proposed a circular PSP pattern to increase the multiplicity 
and decoding accuracy, especially for specular surfaces, and 
maintain sub-pixel accuracy with the limited number of 
images. 

For bin picking purposes, objects are complex and require 
a combination of many segmentation methods, including 
instance, semantic and part segmentations for successful 
localization and positioning [13]. Gou et al.  [14] proposed an 
approach using improved density-based spatial clustering of 
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applications with noise (DBSCAN) algorithm together with 
random sample consensus (RANSAC) for removing bin 
outliers and grouping closely related points to form a singular 
grasping object. Moreover, machine learning algorithms are 
also employed for these tasks. Qi et al. [15] proposed a novel 
neural network named PointNet applying a Multi-Layer 
Perceptron directly on the points to learn features for object 
classification, part segmentation, etc., which are all 
subsidiaries of bin picking task fulfillment. In addition, Xu et 
al. [16] proposed a high-speed instance segmentation scheme 
for 3D point clouds and a novel neural network named FPCC-
Net with new clustering algorithms. 

Thus far, to the best of our knowledge, PointNet 
segmentation has not been widely applied bin-picking 
problems. Ni et al. [17] created a customized dataset and used 
PointNet++ for pose estimation; however, they must rely on a 
predetermined grasping dataset, i.e., marking possible 
grasping positions before training. As a result, the outputs are 
not robust enough and heavily reliant on predetermined 
markings, rendering it unsuitable for bin picking where object 
orientation is not known beforehand. To overcome these 
issues, in this paper, we proposed a novel, end-to-end solution 
for a vision-based automatic bin-picking robot based on 
PointNet segmentation. First, the vision system is calibrated 
individually for each camera; then, stereo calibration is 
performed using the data acquired in the previous stage. 
While capturing images for camera calibration, the system is 
moved accordingly to waypoints in a predetermined trajectory 
optimized for accuracy. The pose at each waypoint is 
recorded and used in the Daniilidis hand-eye calibration stage. 
After the calibration steps are finished, the targeted objects 
are reconstructed in point cloud format by projecting a series 
of six Gray code patterns followed by four-phase shift 
patterns at 0, π/2, π, and 3π/2. Then, point clouds from 
different views, hereafter partial/view clouds, are subject to 
statistical and radius outlier removal filters. Filtered view 
clouds are then concatenated using transformation matrices of 
hand-eye calibration (camera to end effector) and model 
poses (end effector to base). The finished concatenated 
clouds, hereafter full clouds, altogether with partial clouds, 
are fed to PointNet [7] neural network as a training dataset, 
whose estimated grasping pose can be used to pick up the 
objects from a bin. The experiment is conducted to verify the 
proposed solution. 

This paper is organized as follows. Section 2 presents the 
vision-based automated bin picking system. Section 3 
introduces the process of 3D construction and 3D 
segmentation. Section 4 shows several experimental results 
and discussions. Finally, conclusions are given in Section 5. 

II. SYSTEM DESCRIPTION 

In this research, we integrate a structured-light-based 
stereo vision system into a 6-DOF Motoman HP3 manipulator 
(Fig. 1a). The robotic system aims to grasp different-sized 
paintbrushes randomly placed in the bin. 

The structured light stereo vision system consists of two 
Basler cameras and one ASUS ZenBeam projector. Cameras 
are used to capture images, whereas the projector is utilized to 
project a series of six Gray code patterns. Basler cameras are 
connected to the central processing unit through a Power over 
Ethernet (PoE) switch that can transmit image information 
and serve as a source for camera operations. Additionally, this 
transmission protocol benefits high-speed data acquisition and 
robot communication. Waypoint data are sent to the robot 
through the PoE switch as a predetermined trajectory 
optimized for high calibration accuracy and the most well-
rounded surface scan. The robot’s end effector is a gripper 
mounted on a cylindrical aluminum rod. The experiment is set 
up as shown in Fig. 1b. 

III. 3D RECONSTRUCTION AND 3D SEGMENTATION 

A.  3D Reconstruction 

Calibration: To perform 3D reconstruction, the calibration 
processes, including camera calibration, stereo calibration, 
and hand-eye calibration, are required. 

The camera calibration is the process of calibrating each 
camera individually. Based on this process, the extrinsic 
matrix, intrinsic matrix, and distortion coefficients of a 
camera are obtained. For industrial purposes, calibration is 
performed offline, using parameters acquired under specific 
conditions. This calibration method is preferred because it 
offers high accuracy and noise resistance. This thesis 
implemented the calibration method, which makes use of a 
planar pattern or checkerboard. This method only requires at 
least two different views where both camera and the pattern 
can be moved arbitrarily. The camera's intrinsic and extrinsic 
parameters (position and orientation relative to the calibration 
board coordinate system) can be computed using the 
maximum likelihood inference. Once each set of parameters 
is obtained for each camera, the stereo calibration can be 
performed. The stereo calibration determines the geometric 
relationship between the right and left cameras, i.e., a 
transformation matrix indicates the rotation and translation 
that transforms the left camera coordinate to the right camera 
coordinate and vice versa. 

Hand-eye calibration is computing the relationship 
between the image sensor (vision system) and the end effector 
(robot gripper). Consider the task of grasping an object at an 
unknown position relative to the robot tool end. This 
calibration step maps the detected object’s grasping point to 
the tool endpoint. Firstly, a separate vision algorithm 
determines the position and orientation of the object with 
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Figure 1. a Robot arm integrated with a structured-light-based 3D scanning 

system; b Bin picking experiment setup 
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respect to the sensor or camera image plane. Secondly, the 
object grasping parameters (positions and orientations), which 
have been calculated in the previous stage, is mapped from 
the image plane to the end effector (gripper) frame. 
Consequently, a robot can understand an object’s position 
through a hand-eye transformation matrix, move its gripper 
towards the object, and grasp it. This paper uses the Daniilidis 
hand-eye calibration method [18].  

Pattern Generation: Finding correspondences from two 
images is the primary problem of 3D reconstruction using the 
active stereo vision system. In such systems, the 
correspondences are controlled by projecting specific patterns 
(structured light) and affixing the information of each pattern 
onto the object, see Fig. 2. The information of each pixel in 
the first image plane is then used to derive its correspondence 
on the other image plane. This process is referred to as pattern 
encoding and decoding. Structured light serves to encode 
input images whose correspondences can help obtain better 
stereo matching in the decoding process and triangulation for 
3D depth.  

Gray code and phase shifting patterns are selected for 3D 
reconstruction. Theoretically, Gray code can encode images at 

the pixel level (210 for 1024x768). In practice, it is more 
robust than binary encoding, with wrong decoding resulting 
in misplacement of at most one resolution unit. Gray code 
bright and dark lines width with the finest resolution is twice 
as wide as compared to that of binary code. This facilitates 
analysis, especially at steep object surfaces where the code 
appears to be compressed. This paper employs a 5-bit Gray 
code pattern instead of creating the pixel-level pattern. 
Despite being theoretically feasible, Gray code in practice 
suffers from light interference as reflection and camera 
sensors’ incapability to capture the fine, minute distinction 
between large bit pattern fringes. 

The phase shifting profilometry is used to overcome this 
issue by wrapping the phase into the encoded pictures. To 
generate phase-shift patterns, sinusoidal values are firstly 
generated. After which, the values are normalized such that 
they are bound by [0, 1]. Consequently, the values in each 
phase multiply with the array [0, 255] that represents black 
and white pixel values. Accordingly, they become discrete 
columns of black and white pixels, representing sinusoidal 
fringe patterns. The number of fringe patterns depends on 
system requirement, where more patterns mean higher 
accuracy but at the expense of processing time. In this paper, 
a four-step pattern (four fringe images with phase shift 0, π/2, 
π, and 3π/2) is chosen due to higher accuracy, error tolerance, 
and low pattern count than the three-step pattern [19]. 

Point Cloud Registration, Filter: Applying stereo 
calibration parameters obtained in the previous steps, encoded 
input images are rectified. Encoded rectified images then go 
through a triangulation process where 3D data is derived, see 
Fig. 3. Assuming camera intrinsic and baseline distance b are 
known, the depth of image point can be computed. 

1 2

1 2

b x xb bf
Z

Z Z f x x

 
  

 
,        (1) 

where f is the camera focal length, x1 and x2 are the distances 
demonstrated in Fig. 3. Once Z has been determined, X and Y 
are easily computed using a similar triangle theorem. 
Accordingly, a raw point cloud is obtained. However, noise is 
still present in clouds. Two cloud filters are employed in this 
research based on their merits and performance. Radius 
outlier removal filter is powerful and intuitive. However, it 
leaves large residues when applied to dense clusters, plus it is 
very difficult to tune and only ideal for post-processing where 
dense clusters have been removed. The other approach, 
statical outlier removal, uses the statistical method of distance 
mean and standard deviation to identify outliers: those outside 
one standard deviation will be removed. This is an aggressive 
filtering method. Still, it leaves small residues with dense 
clusters and usually mistakes inliers for outliers because 
sparse clouds are difficult to tune, and dense clouds reserve 
the most clustered points. In this paper, a combination of 
statical and radius outlier removal filters is used, which offers 
great compensation for each’s drawbacks. 

 Cloud concatenation is the process of concatenating two 

different view clouds. As the robot moves the stereo system 

for scanning, the pose at each view cloud is recorded, and the 

transformation matrix from the end effector to the base is 

derived from joint angles. Figure 4 illustrates the vision 

system that captures the object in the two different views, 

 
Figure 2. Gray code patterns projected to the object. 

 

Center of cameras

Object

 
Figure 3. Triangulation scheme of stereo vision [20] 
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Figure 4. Eye-in-hand configuration 
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i.e., i- and j-view. Initial matrix c

c

j

iT , representing the 

coordinate transformation from camera position i to j, is 

derived with the following formula. 

          
c 1 b 1 b g

c c g g c

jgj i

i j j i i

 T T T T T                           (2) 

where 
b

giT  and 
b

gjT  are the transformation matrices that 

transform the gripper coordinates corresponding to the i and j 

point clouds, respectively, to the base coordinate; g

c

i

iT  and 

g

c

j

jT  denote the matrices that transform the camera 

coordinates to the gripper coordinates corresponding to the i 

and j point clouds, respectively. Matrices g

c

i

iT  and 
g

c

j

jT  can 

be obtained from hand-eye calibration, the same for all 

positions because the camera system is fixed on the end 

effector. 

 Since point clouds are relative to the camera image plane, 

multiplying them with the obtained initial matrix allows all 

view clouds to be concatenated approximately close to each 

other. For refined cloud alignment, the iterative closest point 

(ICP) algorithm is employed with point-to-plane metrics. 

B. 3D Segmentation 

In the paintbrush picking task, it is necessary to prevent 
the robot from grasping along the curvature of the paintbrush 
or along its fragile hairs, either of which leads to highly 
unstable grasping. Therefore, 3D segmentation is performed. 
Image segmentation means partitioning an image or video 
frame into multiple image regions, with each region carrying 
a certain meaning. In this paper, a deep learning-based part 
segmentation model, called PointNet, is implemented, which 
instructs the robot to grasp along a pre-defined part of a 
paintbrush point cloud.  

PointNet segmentation receives 3D data points as inputs. 
Those inputs go through a joint alignment network to 
normalize features and positions to local coordinates, as 
mentioned above. As dimensions expand, max-pooling using 
symmetric function on unordered point sets extracts global 
features of the clouds. The results of which are aggregated 
and concatenated with local features to create a multi-lay 
vector. This vector is then subject to Multilayer Perceptron 
(MLP) to derive cloud index scores into two classes: 
Graspable and ungraspable. These scores then go through a 
thresholding process to determine true graspability. The loss 
function used in this segmentation network is categorical 
cross-entropy. 

CloudCompare’s Interactive Segmentation Tool is utilized 
to define ground-truth labels for graspable and ungraspable 
parts, which are used for the training data. In CloudCompare, 
filtered view clouds and full clouds are annotated for grasping 
area, the thinnest part of the paintbrush handle, by segmenting 
the proposed cloud clusters. PointNet requires point clouds to 
be of certain symmetrization, so view clouds with different 
perspective coordinates are aligned to full clouds “coordinate 
perspective.” 

The dataset comprises 20 different paintbrushes of five 
dimensions. To reduce overfitting when training the model, 
data augmentation is performed to increase the amount of 
data. The training point clouds are augmented by applying 
random jitter and noise. Additionally, the dataset is enriched 

by cutting out certain parts of the clouds. This exposes the 
model to cases where the objects are not scanned from end to 
end. 

The dataset is divided into a train-validation-test ratio of 
208-52-40. This is to ensure that every brush’s full cloud and 
view cloud are included in the test dataset while the train and 
validation test follows an 80-20 ratio of the remaining clouds. 
Then, we train for 50 epochs using stochastic gradient descent 
and Adam optimizer with 0.001 initial learning rate and 0.9 
momentum value. The learning rate is halved every 15 
epochs. 

IV. RESULTS AND DISCUSSION 

A. 3D Reconstruction 

The 3D reconstructing task of the robotic system using the 
proposed method is verified via reconstructing two different 
objects. Fig. 5 shows the point cloud of a plaster statue. By 
subjectively visual evaluation, fine surface details are all 
captured and registered in the frontal view. Superficial details 
such as the nose bridge, eye sockets, lips, and cheekbones are 
all prominent in the view cloud. Furthermore, the 3D 
reconstructed model shows certain creases on the face and 
neck of the statue clearly, see Fig. 5.b. In Fig. 6, the point 
cloud of a 3D printed block is demonstrated. The precision of 
the 3D reconstruction is evaluated based on actual and 
registered distance discrepancy. This quantitative evaluation 
experiment delivers satisfactory results, i.e., the error rate is 
less than 0.6%. 

Figure 7 illustrates the process of full cloud concatenation. 
Full clouds are obtained by aligning view clouds, using the 
initial matrix in (2) and the ICP algorithm. They are subject to 
subsampling and normalization before being fed to PointNet. 
When initial matrices do not align view clouds to 
approximate positions, manual transformation using 
CloudCompare is employed. This means using 
CloudCompare to find the initial matrix by rough aligning 
them in the application, then using that transformation matrix 
for the ICP algorithm. The fully reconstructed point cloud of 
the object is nearly identical with minor errors. The full cloud 
concatenation experiment also produces expected results. In-
depth analysis shows that the error rate maintains less than 
0.3% for all dimensions. This plays an important role in 
preparing the dataset in a timely manner where the whole 
system takes less than 5 minutes from start to end, including 
camera calibration (mono, stereo, hand-eye), view cloud 
registration, cloud filtering, and full cloud concatenation. This 
aspect can be scaled to a great extent, reducing manual 
interference substantially, automating all steps in the 
workflow, and deploying the system for bin picking tasks. It 
is noted that the full clouds of the brushes are subject to 
subsampling and normalization before being fed to PointNet. 

B. Bin picking task 

In a bin-picking environment, the objects are 
disorganized. Therefore, the first scan of the bin (Fig. 8a) 
returns a noisy cloud with objects intertwined with each other 
(Fig. 8b). This cloud cannot run inference on PointNet 
because the model only understands singular brushes. 
Therefore, DBSCAN and RANSAC are used for removing 
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bin outliers and grouping closely related points to form a 
singular grasping object (Fig. 8d). As a result, these 
segmented clouds can run inference on PointNet (Fig. 8e). 

After inference, the segmented part returns a cluster of 
graspable points in the cloud. The grasping area is determined 
to be the thinnest part of the handle (Fig. 9). The centroid of 
the cluster of graspable points in the cloud can be determined 
as follows: 

       Centroid = average ,average ,averagex y z    (3) 

Finally, this estimated centroid multiplied with the hand-eye 
matrix will return the grasping point in the robot coordinate. 
This allows the robot to move to the position and grasp the 
paintbrush (Fig. 10). The experiment shows the success rate 
of grasping the paintbrush is 64%. This success rate is not 
high. 

C. Discussions 

The success rate of grasping the paintbrush is limited due 

to the calibration issue. The hand-eye calibration algorithm 

used in this paper has low accuracy. Since the accuracy of 

hand-eye calibration heavily affects cloud concatenation and 

bin picking tasks, a better calibration algorithm should be 

considered. Our current scheme still lacks a cloud 

concatenation process, which stands as a bottleneck. This 

leads to poor, unsatisfactory initial view clouds alignment, 

resulting in erroneous cloud registration. Therefore, we 

suggest a more robust hand-eye calibration method to 

achieve higher accuracy for both grasping and point cloud 

aligning problems. 

     Furthermore, though efficient and adequately fast, the 

point cloud registration process still consumes more than 60 

seconds. Industrial applications may require less than 5-10 

seconds for every generation, including robot actuation time. 

This can be overcome by using fewer fringe patterns, 

triggering capturing process with a change in pattern 

projection instead of delaying for a fixed duration. 

V. CONCLUSION 

This paper develops an industrial robotic arm integrated 

with a structured-light-based stereo vision system for the bin-

picking task. In this system, the solution for 3D 

reconstruction is developed based on the combination of the 

Gray code and phase shifting profilometry. Point clouds of 

a  b  
Figure 5. a Plaster statue; b Reconstructed view cloud 

 

a  b  
Figure 6. 3D printed block: a Actual block; b Reconstructed view cloud. 

 

 
Figure 7. Full cloud concatenation. 
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Figure 8. a Scanning the bin; b Noisy bin cloud; c Bin cloud after statistical 

and radius filters; d Segmented individual brushes using DBSCAN and 
RANSAC; e Segmented clouds ready for PointNet inference. 
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the object are determined and then concatenated to obtain the 

full clouds. The full clouds altogether with partial clouds are 

fed to PointNet neural network as a training dataset, whose 

estimated grasping pose can be used to pick up the objects 

from a bin. The experimental results show that the developed 

system can reconstruct objects with high precision. 

Additionally, the system can extract each individual 

paintbrush cloud from the bin environment cloud, and the 

robotic arm can grasp along a pre-defined part of a 

paintbrush point cloud. However, the success rate of 

grasping the paintbrush is still limited. Several probable 

solutions proposed to improve the system include calibrating 

the system with a more robust method, using multiple angles 

to get redundant calibration parameters, equipping the system 

with a better gripper, and developing collision avoidance 

algorithm before grasping.  
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Figure 9. Cluster of graspable points in the cloud (blue dots). 
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Figure 10. Grasping calculation sequence 
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